

Overview

- The Science Traceability Matrix (STM)
 - What is it?
 - How is it used?
- Relation to other mission concept aspects
 - Goals, Objectives
 - Requirements
- Structure of the STM
- Common STM concerns, solutions

The STM: What is it?

- A proposal element that...
 - is required by SMD AOs
 - summarizes key aspects of the mission's technical implementation
 - summarizes key aspects of the mission necessary for successful completion of the investigation
 - re-arranges a missions requirements from a focus on design to a focus on research
 - provides a single, digestible reference that every aspect of the proposal can branch off of and tie into
- The STM is the backbone of the proposal.
 - A primary way to inspire confidence in the reviewer
 - A primary way to demonstrate a well-thought-out mission concept
 - A primary way to lose trust of the reviewer
 - A primary way to display issues or disconnects with the design or the team

The STM: How is it used?

- The STM is a guide to every aspect of the mission concept in a single, unified vision.
- For the proposer...
 - An opportunity to ensure common understanding between leadership, instrument providers, science team, and engineering team
 - An opportunity to identify issues in the design
 - A constant touchstone in the generation of a clear and consistent proposal narrative
- For the reviewer...
 - An opportunity to quickly gain a sense of the entire mission concept
 - An opportunity to identify internal disconnects or inconsistencies
 - Not just in the design, but in the team

Goals and Objectives

- Missions are formulated starting with Goals and Objectives
 - Goal: A broad scientific effort that is part of a larger strategy to address a program's objectives. A mission investigation will make progress towards the mission's Goals, but is not expected to completely achieve them.
 - What part of the field will my mission help advance?
 - Objective: A focused scientific effort that is part of a larger strategy to address a mission goal. A mission Objective must be achieved by a mission.
 - What specific, quantified scientific contribution will my mission make?
- The level of detail or scientific specificity for a Goal and an Objective depends on the science and the investigation. A Goal and an Objective must be scoped together.
 - Can be difficult to argue a narrowly focused Objective will make clear progress on an overly broad Goal
 - Can be difficult to argue that a broad Objective will be entirely completed
 - Reviewers come to a proposer with their own ideas. They may not understand a statement to be as limited as the proposer does.

Goals and Objectives

- Objectives state what the mission will complete, regardless of the type of science investigation.
- Can think of putting an Objective into one of three rough categories (*my terms*):
 - Characterization: You know enough to design a mission to study a system at a high-level.
 - Hypothesis-testing: You have specific hypotheses that a mission can be designed to resolve.
 - Analytic: You have specific knowledge gaps about an understood (to some level) system that a mission can be designed to fill.
- These are rough categories, and a clever person can force most Objectives into any category. But *remember the purpose of Objectives*.
 - Define what a mission must complete (metrics), keep design in the resource envelope
 - Clarity and consistency in proposal's narrative controls expectations and keeps the reviewer on the same page

Goals and Objectives

- No mention of "science questions" in this presentation, and that is deliberate
- Science questions aren't defined in the SMD AO, no common community understanding of what a science question *is*
 - Some see it as falling between a Goal and an Objective
 - Some see it as falling between an Objective and a Level 1 Requirement
- Asking questions invites the reviewer to tell you what the answer could be, to interpret
 the question. Stating determinative Objectives tells the reviewer what you will do.
 - Can't prove that you've fully answered a question, can prove you've fully made a determination
- A proposer's job is to remain in control of the narrative, be clear and consistent, and inspire confidence and trust. A disconnect in understanding between the proposer and reviewers, or between different reviewers, is disadvantageous for a proposal.

Mission Design Requirements

Requirements Level	Mission Level
Level 1	Program
Level 2	Project
Level 3	Instrument, Mission System
Level 4	Subsystems

Mission requirement levels are the mission *design* requirements to complete the objectives.

The requirements levels may remind you of the levels in a mission's Work Breakdown Structure (WBS). They are based on a similar type of flowdown, but there is not a one-to-one mapping.

Requirements Level	Mission Level
Level 1	Program
Level 2	Project
Level 3	Instrument, Mission System
Level 4	Subsystems

Level 1 Requirements are the scientific determinations and/or results that are necessary for completion of each Science Objective.

 They are agnostic to mission implementation details, but mission implementation details flow up to them.

Example: The mission shall determine the average time for [auroral emission] to maximize after the impact of [solar wind structure] with an accuracy of X minutes ([confidence level]).

Mission Design Requirements

Requirements Level	Mission Level
Level 1	Program
Level 2	Project
Level 3	Instrument, Mission System
Level 4	Subsystems

Level 2 Requirements are the project performance requirements that flow down from the Level 1 Requirements.

• They are the first level of mission implementation details. They are linked to the Level 1 Requirements via the mission's research plan.

Example: The mission shall determine the intensity of [auroral emission] with an accuracy of X, a precision of Y, and a cadence of Z seconds.

Mission Design Requirements

Requirements Level	Mission Level
Level 1	Program
Level 2	Project
Level 3	Instrument, Mission System
Level 4	Subsystems

Level 2 Requirements are the project performance requirements that flow down from the Level 1 Requirements.

• They are the first level of mission implementation details. They are linked to the Level 1 Requirements via **the mission's research plan**.

Example: The mission shall determine the intensity of X, a precision of Y, and a cadence of Z seconds.

Key point!

Developing a mission requires knowing what research you are designing it to *complete*!

	Scientific Measurement Requirements		Instrument	Projected	Mission	
Goal	Objective	Physical Parameters	Observables	Performance Requirements	Instrument Performance	Requirements (Top Level)
	Obj. 1	Phys. Para. 1a	Obs. 1a-1			Observing strategies
Goal 1	Obi 2	Phys. Para. 2a	Obs. 2a-1			Phenomena
	Obj. 2	Phys. Para. 2b	Obs. 2b-1			observation requirements
Goal 2	Obi 2	Dhys Dara 2	Obs. 3a-1			Launch window
Godi Z	Obj. 3	Phys. Para. 3	Obs. 3a-2			

Goal: A broad scientific effort that is part of a larger strategy to address a program's objectives. A mission investigation will make progress towards the mission's Goals, but is not expected to completely achieve them.

Objective: A focused scientific effort that is part of a larger strategy to address a mission goal. A mission Objective must be achieved by a mission.

		Scientific Measurement Requirements		Instrument	Projected	Mission
Goal	Objective	Physical Parameters	Observables	Performance Requirements	Instrument Performance	Requirements (Top Level)
	Obj. 1	Phys. Para. 1a	Obs. 1a-1	•••		Observing strategies
Goal 1	Ohi 2	Phys. Para. 2a	Obs. 2a-1			Phenomena
	Obj. 2	Phys. Para. 2b	Obs. 2b-1			observation requirements
Goal 2	Obi 2	Dhuc Dara 2	Obs. 3a-1			Launch window
Godi Z	Obj. 3	Phys. Para. 3	Obs. 3a-2			

Physical Parameters: The highest-order data product(s) characterizing the physical system that enables the science investigation's completion of the Objective.

• Has verification parameters (e.g. accuracy, resolution) that flow down to the Observable and to mission requirements (e.g. spatial coverage, mission lifetime)

Observable: The physical measurement that is made by the mission and that enables the determination of the Physical Parameter.

	Scientific Measurement Requirements		Instrument	Projected	Mission	
Goal	Objective	Physical Parameters	Observables	Performance Requirements	Instrument Performance	Requirements (Top Level)
	Obj. 1	Phys. Para. 1a	Obs. 1a-1	•••	•••	Observing strategies
Goal 1	Ohi 2	Phys. Para. 2a	Obs. 2a-1	•••		Phenomena
	Obj. 2	Phys. Para. 2b	Obs. 2b-1			observation requirements
Goal 2	Ohi 2	Dhuc Dara 2	Obs. 3a-1			Launch window
Godi Z	Obj. 3	Phys. Para. 3	Obs. 3a-2			

mot Examples unique mapolines

Physical Parameter	Observable(s)
Electron density (local)	Upper hybrid frequency, magnetic field magnitude
Relative densities of elements X and Y	Emission line X, emission line Y
Map of surface elevation	Two-way travel time of emitted signal
Gravity field	Doppler shift of radio signal

Goal Objective	Scientific Measurement Requirements		Instrument	Projected	Mission	
	Objective	Physical Parameters	Observables	Performance Requirements	Instrument Performance	Requirements (Top Level)
	Obj. 1	Phys. Para. 1a	Obs. 1a-1		•••	Observing strategies
Goal 1	Ohi 2	Phys. Para. 2a	Obs. 2a-1		•••	Phenomena
	Obj. 2	Phys. Para. 2b	Obs. 2b-1			observation requirements
Goal 2	Obi 2	Dhys Dara 2	Obs. 3a-1			Launch window
Godi Z	Obj. 3	Phys. Para. 3	Obs. 3a-2			

Mission Requirements: The driving mission requirements that immediately flow down from the Scientific Measurement and Instrument Performance Requirements.

- Key mission requirements that enable necessary measurement
- Varied and particular to each mission implementation

STM Elements and Req. Levels

Req. Level	Mission Level	STM Column
Level 1	Program	Objective
Level 2	Project	Physical Parameter
		Observables
		Mission Requirements

The mission requirement levels are formal systems engineering requirement levels for designing the mission.

- Technical engineering requirements that combine with other requirements at the same level in order to realize products for their parent requirements
- Based on objective, measurable technical performance requirements

The STM columns are a re-envisioning of the mission requirement levels based around mission operations and the mission's research plan.

Restructured form is easier to digest, puts important information on one page

STM Elements and Req. Levels

Req. Level	Mission Level	STM Column
Level 1	Program	Objective
Level 2	Project	Physical Parameter
		Observables
		Mission Requirements

The mission requirement levels are formal systems engineering requirement levels for

designing the mission.

• Technical engineering requirements that combine same level in order to realize products for their parts.

Based on objective, measurable technical perform

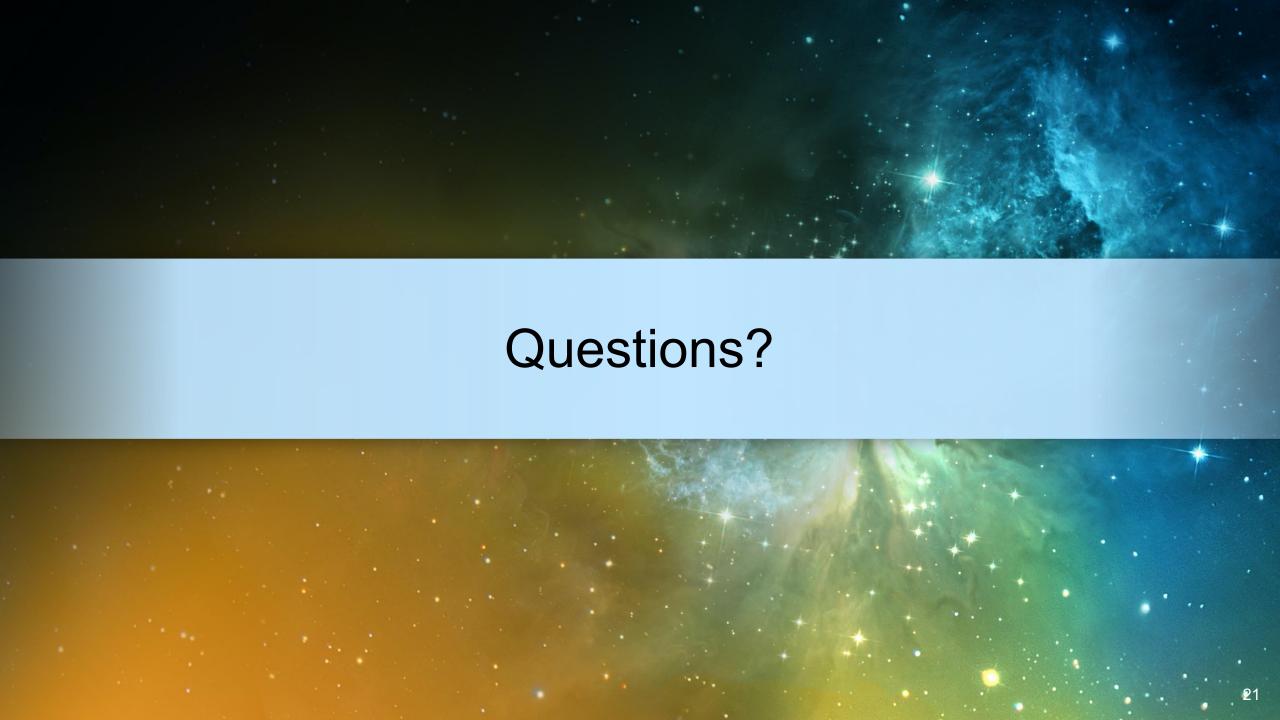
Key point!

Developing a mission requires knowing what research you are designing it to *complete*!

The STM columns are a re-envisioning of the mission requirement levels based around mission operations and the mission's research plan.

Restructured form is easier to digest, puts important information on one page

Common Concerns, STM


- No clear flowdown of the requirements across the entire STM
 - Overly broad or vague Objectives?
 - Lack of a well-focused research plan?
- Missing, inadequate, or confused measurement verification parameters, margin, error budget
 - Spatial/temporal coverage
 - Accuracy vs. precision
 - Change in units within a proposal

Common Concerns, STM

- Disconnect between Measurements and Instrument Requirements
 - Inadequate communication between science team and instrument provider?
 - Instrument Requirements far exceed the requirements to complete the science?
 - Instrument Requirements developed to justify the instrument, not to enable the science?
- Disconnect between Instrument Requirements and Instrument Performance
 - Inadequate communication between science team and instrument provider?
 - Instrument was selected before the requirements were determined?
 - Instrument was selected for reasons other than it was the most appropriate for the science?

Common Issues, Solutions

- Start early! Having an STM (even if it is later refined) will make the narrative smoother
- Start with the specific Objectives to be completed and the scientific determinations that are necessary for them to be achieved
 - Properly scope your investigation; know exactly
 - Metrics of success are science results you can publish, not volumes of data acquired
- Integrate the mission team early, ensure that everyone is on the same page
 - The PI is in charge of the mission, which means being in charge of the narrative
 - Produce a concise, self-consistent STM and do not abdicate that responsibility
- Set your requirements and check them with every update to the STM
 - Science: Spatial/temporal coverage, accuracy, etc.
 - Implementation: Resource margin, error budget, etc.

